Zum Inhalt springen

Gemeinsame Graduiertenkollegs

Das Forschungsprogramm des von der Deutschen Forschungsgemeinschaft (DFG) geförderten Graduiertenkollegs “Hydrogel-basierte Mikrosysteme” (GRK 1865) der TU Dresden und des Leibniz-Instituts für Polymerforschung Dresden e.V. hat ist von einem stark interdisziplinären Charakter geprägt.
Ingenieure, Physiker, Materialwissenschaftler und Chemiker arbeiten im Rahmen des Kollegs an mikrosystemtechnischen, struktur- und strömungsmechanischen Anwendungen sowie grundlegenden Eigenschaften des vielseitigen Materials „Hydrogel“.
Auf dieser Webseite erfahren Sie mehr über unsere Arbeit und den aktuellen Stand unserer Forschungs auf dem Gebiet der Hydrogel-basierten Mikrosysteme.

Bestehende Konstruktionen aus Beton oder Stahlbeton weisen i. d. R. einen relativ geringen Widerstand gegen kurzzeitdynamische Belastungen wie z. B. Stoß, Detonation oder Erdbeben auf. Das zentrale Ziel des geplanten Graduiertenkollegs ist, bestehende Gebäude und Bauwerke durch Applikation von flächigen, dünnschichtigen Verstärkungen deutlich widerstandsfähiger zu machen. Durch die Verwendung neuartiger mineralisch gebundener Komposite soll die Sicherheit der Menschen und der für das Leben der Menschen wichtigen Infrastruktur signifikant erhöht werden. Die entwickelten Grundlagen werden außerdem das wirtschaftliche und ökologische Bauen von neuen, gegen Impaktbeanspruchungen höchstresistenten Strukturen ermöglichen.

The Technische Universität Dresden (TUD) and King’s College London (KCL) are experts in identifying and modifying immunological processes relevant to the pathophysiology of Type 1 Diabetes (T1D) and Type 2 Diabetes (T2D).

Both academic institutions are leading islet transplantation centres and have been pioneering new interventional strategies for the treatment of both types of diabetes and the metabolic syndrome, including bariatric surgery. This expertise is combined within the overarching aim of the proposed IRTG to implement our joint key research goals; namely, advancement of our understanding of the pathophysiology of Type 1 and Type 2 Diabetes and development of regenerative and interventional strategies to halt and reverse these pathologies. Little is known about the timeframe and nature of the initial steps in immunological beta-cell destruction that underlie T1D. The understanding of mechanisms governing obesity-related insulin resistance, the process leading to T2D, is scarce. The IRTG will hence focus on these 2 core research topics. The first, ‚Recognition, regeneration and cell replacement in T1D‘ will study the immunological antigen-presenting machinery of beta cells, and specific progenitor cells including new possibilities of using human pluripotent stem cells for the regeneration and/or cell preplacement of pancreatic beta-cells. The second, ‚Systems biology in T2D‘ will provide a better understanding of the inter-organ cross talk and immunological processes leading to peripheral insulin resistance and T2D and will advance and develop new interventional and immunological approaches and treatment options.

Das Ziel dieses Graduiertenkollegs ist die Untersuchung der Eisen-Pniktide sowie strukturell und elektronisch verwandter intermetallischer Supraleiter wie z. B. den Übergangsmetallchalkogeniden in einem interdisziplinär eng verzahnten Projekt. Die beteiligten Institutionen in Dresden sind bereits mit großem Erfolg und international führend in diesem jungen Forschungsfeld tätig. Ein Schwerpunkt liegt in der Untersuchung der Frage, wie Supraleitung in Konkurrenz zu einem schwach korrelierten itineranten Bandmagneten entstehen kann und sich nicht wie in den Kupraten in der Nachbarschaft eines hochkorrelierten Mott-Isolators entwickelt. Experimentell wird ein vollständiges Methodenspektrum von der Einkristallzucht und Dünnfilmpräparation über Röntgen- und Neutronenstrukturuntersuchungen bis zu Ladungs- und spinsensitiven Spektroskopiemethoden eingesetzt. In der theoretischen Modellierung werden Elektronenstrukturrechnungen durchgeführt, mit Vielteilchenmethoden die Stabilität und Konkurrenz von magnetischen und supraleitenden Grundzuständen untersucht sowie die Transportphänomene in diesen Systemen beschrieben.

The aim of the iEGSEMP Korea, which is funded within the Institutional Strategy („Zukunftskonzept“) of TU Dresden in the framework of the German Excellence Initiative, is to train PhD students from Germany and Korea, in a synergetic way in current topics of materials research for applications in electronics, energy and medical technologies.

The IHRS NanoNet is an interdisciplinary research school in the field of nano-electronics open to outstanding students of all nationalities with backgrounds in physics, chemistry, electrical engineering, and materials science. The 3-years PhD programme includes independent research work in a project involving different branches of science and engineering and a well-structured scientific curriculum providing for a comprehensive training in technical and professional skills.

The school is a collaboration between several partner institutions in Dresden, Prague and Wroclaw offering PhD studentships in a variety of fields in atomic, molecular and laser physics, condensed matter physics and chemistry – primarily in theoretical and computational research – tied together by the common theme of understanding many-body systems with strong interactions. Applications, which are received biannually, are open to talented and motivated students regardless of nationality.

The research mission revolves around the question: How do cells form tissues and organisms? We are dedicated to training young talents who are passionate about truly cross-disciplinary research. We support early independence, continually mentor professional development, and help encourage great discoveries.

The program trains the future leaders of science. We are looking for innovative and independent minds. With pioneering scientific research, a demanding curriculum, and incentives for swift training progress, our PhD program is tailored for those who aim high, are willing to take risks, and enjoy a rapid pace.

 

The DLGS aims to prepare the next generation of transformative leaders in spatial sustainability sciences, providing a high quality interdisciplinary environment for developing the academic and professional skills required to meet the diverse challenges related to spatial change dynamics and the global human-ecological crisis. DLGS graduates are trained to take up early career positions in academic, governmental, business or civil society organizations where they can contribute to foster spatial sustainability transformations.

The 3 core goals of the DLGS are therefore:

  • Scientific excellence: Guide fellows to develop doctoral theses well beyond the current scientific state-of-the-art;
  • Sustainability impact: Enable fellows to produce results of significant practical relevance and impact on spatial sustainability transformations;
  • Professional qualification: Enable fellows to fill the sustainability leadership positions of the future.

These goals are further underpinned by 7 operational objectives

  • Deepen theoretical and methodological knowledge in one scientific core discipline;
  • Promote engagement with other scientific disciplines and develop interdisciplinary competence within the wider field of sustainability science;
  • Develop management- and organizational capabilities for doing efficient and effective research;
  • Convey key skills and techniques for scientific research, writing, publishing and networking;
  • Facilitate peer-to-peer exchange and knowledge co-creation between fellows;
  • Develop competence in transdisciplinary research and science-practice interactions, involving diverse stakeholders;
  • Support the development of transformative leadership skills to navigate collective pathways towards sustainability.